LETTERS TO THE EDITOR

DEVELOPMENT OF A NEW APPROACH TO FORMATION OF A PYRROLE RING: SYNTHESIS OF 2-HYDROXYPYRROLES

L. Brandsma¹, N. A. Nedolya², S. V. Tolmachev², and A. I. Albanov²

Keywords: isothiocyanate, 1-(1-ethoxyethoxy)-2-heptyne, 5-(1-ethoxyethoxy)- and 2-hydroxypyrroles.

2-Hydroxypyrroles are obtained by direct oxidation of pyrroles that are unsubstituted in the α -position or by ring synthesis [1]. Recently, within the framework of a fundamentally new strategy for synthesis of pyrroles [2], we proposed a novel general approach to formation of the 3-hydroxypyrrole ring, starting from available isothiocyanates and 3-(1-ethoxyethoxy)-1-propyne [3].

Using lithiated 1-alkoxyethoxy-2-alkynes such as 1-(1-ethoxyethoxy)-2-heptyne (1) in the reaction with isothiocyanates also opens up a new direct route to the difficultly accessible 2-hydroxypyrroles of type 5a, existing in the form of the tautomeric pyrrol-2(5H)-ones 5b (IR and NMR spectra). The reaction is carried out in a single preparative step [2].

¹ Utrecht University, 3584 CH Utrecht, The Netherlands; e-mail: l.brandsma@chem.uu.nl. ² Irkutsk A. E. Favorskii Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk 664033, Russia; e-mail: nina@irioch.irk.ru. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 394-395, March, 2001. Original article submitted November 27, 2000.

The precursor of the 2-hydroxypyrrole, 5-(1-ethoxyethoxy)pyrrole (4) is obtained in 51% yield (not optimized).

3-Butyl-5-(1-ethoxyethoxy)-1-methyl-2-(methylthio)pyrrole (4). Heptyne 1 (9.2 g, 0.05 mol) was added to a solution of n-BuLi (0.06 mol), cooled down to -100°C, in hexane (38 ml) and THF (50 ml) under a nitrogen atmosphere. After 30 min of stirring at -50°C, the reaction mixture was cooled down to -100°C again and a solution of methyl isothiocyanate (4 g, 0.05 mol) in THF (~15 ml) was rapidly added to it. After raising the temperature of the reaction mixture up to -40°C, MeI (10 g, 0.07 mol) were added to it followed by (at 12°C) finely ground CuBr (0.8 g). After a spontaneous rise in temperature up to 28° C (over the course of ~10 min), a saturated solution of NH₄Cl with ~10% NaCN (~150 ml) was added to the reaction mixture. This was stirred for 10 min, and the organic layer was separated. The aqueous layer was extracted with ether (3 \times 50 ml). The combined organic fraction was dried with MgSO₄, the solution was passed through a column with neutral Al_2O_3 , the solvent was removed under reduced pressure, and the residue was distilled. Yield 6.91 g (51%) of pyrrole 4; bp 130-140°C (0.1 mm Hg), content of the basic material ~100% (GLC). IR spectrum, y, cm⁻¹: 900, 950, 1040, 1070, 1100 sh, 1120 sh, 1140, 1170, 1310, 1340, 1370, 1400, 1450-1480, 1550, 2850, 2930, 2950, 2970 shoulder. ¹H NMR spectrum (400 MHz, CDCl₃), δ, ppm: 5.28 (1H, s, CH=); 5.18 (1H, q, OCHO); 3.80, 3.54 (2H, m, OCH₂); 3.46 (3H, s, NMe); 2.54 (2H, t, CH₂); 2.09 (3H, s, SMe); 1.49 (2H, m, CH₂); 1.44 (3H, d, Me); 1.36 (2H, m, CH₂); 1.21 (3H, t, Me); 0.92 (3H, t, Me). ¹³C NMR spectrum (100 MHz, CDCl₃), δ, ppm: 145.52 (NCO), 129.49 (NCS), 110.92 (3 -C=), 102.47 (CH=), 88.54 (OCHO), 63.42 (OCH₂), 33.75 (CH₂), 28.63 (NMe), 26.81 (CH₂), 22.65, 21.24, 20.69, 15.34, 14.11. Found, %: C 61.60; H 9.55; N 5.19; S 12.09. C₁₄H₂₅NO₂S. Calculated, %: C 61.95; H 9.28; N 5.16; S 11.81.

4-Butyl-1-methyl-5-(methylthio)-1,5-dihydropyrrol-2-one (5b). Conc. HBr (1 drop) was added to a solution (cooled down to -5°C) of pyrrole **4** (2.7 g, 0.01 mol) in methanol (40 ml). After 3-5 min, 1-methoxy-1-ethoxyethane and excess methanol were driven off on a rotary evaporator. The residue contained 1.98 g (99.5%) of pyrrole **5b** as a viscous liquid; content of basic material, ~100% (GLC). IR spectrum, v, cm⁻¹: 682, 763, 851, 963, 1012, 1129, 1189, 1238, 1274, 1388, 1422, 1466 sh, 1628 w, 1698 (C=O), 2872, 2929, 2957, 3390 w. ¹H NMR spectrum (400 MHz, acetone-d₆), δ, ppm: 5.85 (1H, q, CH=O); 5.01 (1H, d, NCHS); 2.84 (3H, s, NMe); 2.47-2.34 (2H, m, α-CH₂); 1.56 (2H, m, β-CH₂); 1.53 (3H, s, SMe); 1.38 (2H, m, γ-CH₂); 0.90 (3H, t, Me). ¹³C NMR spectrum (100 MHz, acetone-d₆), δ, ppm: 169.92 (C=O), 160.88 (4 × C=O), 122.90 (CH=), 68.50 (NCHS), 29.99 (CH₂), 28.45 (CH₂), 26.26 (NMe), 22.97 (CH₂), 14.04 (Me), 7.56 (SMe). Found, %: C 60.51; H 8.47; N 7.29; S 15.73. C₁₀H₁₇NOS. Calculated, %: C 60.26; H 8.60; N 7.03; S 16.09.

REFERENCES

- 1. A. Gossauer, *Pyrrole Chemistry* [in German], Springer-Verlag, Berlin (1974).
- 2. N. A. Nedolya, *Thesis*, Utrecht University, The Netherlands (1999), p. 144.
- 3. L. Brandsma, N. A. Nedolya, and B. A. Trofimov, Izv. Akad. Nauk, Ser. Khim., 1645 (2000).